viernes, 26 de noviembre de 2010

Números romanos

Sistema de numeración de los romanos, el problema es que no es una buena herramienta para el cálculo, puesto que utiliza letras del alfabeto para representar los números y no es posicional, es decir cada símbolo vale siempre lo mismo, no importa dónde esté colocado. Las cifras que son utilizadas son: I, V, X, L, C, D, M.
El sistema se basa en la suma de los símbolos. Salvo en el caso en que un signo numérico menor preceda a uno mayor, en ese caso se utiliza la sustracción.
El siglo XIX
Al igual que Arquímedes y Newton, Gauss es uno de los genios de la historia de las Matemáticas. Sus aportaciones fueron increíbles y precisamente por eso, algunos de ellos, esperaron más de un siglo para ser aceptados.
Las aportaciones de Gauss fueron tantas que llegaron a ser inestimables; algunas de ellas son la Teoría de números, Astronomía, Magnetismo, Geometría, Análisis. La gran mayoría, sino es que todos los descubrimientos en el siglo XIX, se deben a Gauss:

Las Disquisiciones Aritméticas, escritas en 1799 y publicadas en 1801, fueron la obra cumbre de la Teoría de Números de la época, la cual colocó a Gauss en la cumbre de la matemática, a sus 24 años. En el artículo 293 de la quinta sección Gauss demuestra que todo número entero es suma de, a lo sumo, tres números triangulares y de cuatro cuadrados. N = ð ð ð ð ð
En la última proposición de las Disquisiciones Gauss nos brinda la relación de los polígonos regulares que se pueden construir con regla y compás.
Su Logro más grande fue el hecho de haber construido el polígono regular de 17 lados , lo cual nadie había logrado anteriormente.
Sus técnicas para el cálculo de órbitas planetarias aplicando el principio de mínimos cuadrados están recopiladas en su segundo libro "Teoría del movimiento de los cuerpos celestes", publicado en 1809.
De igual manera publicó los residuos cuadráticos y bicuadráticos, así como la ley de mínimos cuadrados.
Pero eso no le bastó, así que se dedicó de lleno al Teorema Fundamental del Álgebra, teniendo sólo 22 años en su tesis doctoral. Fue el primer matemático que demostró que cada ecuación tiene al menos una raíz compleja, consiguiendo la aceptación por los matemáticos de los números complejos, los cuales ya habían sido estudiados anteriormente por Wallis y Euller, pero se referían a ellos como números imposibles, con explicaciones muy poco convincentes para el resto de los matemáticos.
Medio siglo antes de que Bolyai y Lobatchesky descubriesen la geometría hiperbólica, Gauss ya le había comunicado a un amigo la existencia de geometrías no euclideas tan consistentes como ésta. Y fue así como en su Quinto Postulado de Euclides los esquematizó:


Franklin Johan Díaz Hernández
C.I. 14.782.819
EES  SECC: 1
 Sir Thomas L. Heath, A Manual of Greek Mathematics, Dover, 1963, p. 1: "In the case of mathematics, it is the Greek contribution which it is most essential to know, for it was the Greeks who first made mathematics a science."
Victor J. Katz (1995), "Ideas of Calculus in Islam and India", Mathematics Magazine 68 (3): 163–74.

No hay comentarios:

Publicar un comentario